Mathématiques.club

Accueil > Terminale ES > Suites > Méthodes > Montrer qu’une suite est géométrique

Montrer qu’une suite est géométrique

jeudi 29 décembre 2016, par Neige

Méthode

Il existe différentes méthodes pour démontrer qu’une suite est géométrique.
On présente ici la plus classique en Terminale ES.

Une suite $(u_{n})$ est géométrique si et seulement si pour tout entier naturel $n$, $u_{n+1}=a\times u_{n}$ où $a$ est un nombre indépendant de $n$.

Pour démontrer qu’un suite est géométrique, on peut donc montrer qu’elle respecte bien la relation $u_{n+1}=a\times u_{n}$.
Lors des épreuves de BAC, il est fréquent d’utiliser la rédaction suivante :
$u_{n+1}=... \qquad $(d’après la relation donnée dans l’énoncé)
$\\ \qquad =... \\ \qquad =a\times u_{n}$
Donc $(u_{n})$ est géométrique de raison $a$.

Un exemple en vidéo

D’autres exemples pour s’entraîner

  • Niveau moyen
    On considère la suite $(u_{n})$ telle que $u_0=12$ et définie pour tout entier naturel $n$ par $u_{n+1}=3u_n-4$. Par ailleurs, on considère la suite $(v_{n})$ définie pour tout entier naturel $n$ par $v_{n}=u_n-2$.
    Montrer que $(v_{n})$ est une suite géométrique et préciser sa raison ainsi que son premier terme.
Voir la solution

Soit $n$ un entier naturel.
$v_{n+1}=u_{n+1}-2$ d’après l’énoncé.
$\qquad =(3u_n-4)-2$ d’après l’énoncé.
$\qquad =3u_n-6$
$\qquad =3(u_n-2)$ en factorisant (on peut aussi remplacer $u_n$ par $v_n+2$)
$\qquad =3v_n$
Donc $(v_{n})$ est une suite géométrique de raison 3.
De plus, le premier terme de cette suite est $v_0=u_0-2=10$.

  • Niveau difficile
    On considère la suite $(u_{n})$ telle que $u_0=7$ et définie pour tout entier naturel $n$ par $u_{n+1}=\frac{2}{u_n-1}$. Par ailleurs, on considère la suite $(v_{n})$ définie pour tout entier naturel $n$ par $v_{n}=\frac{u_n+1}{u_n-2}$.
    Montrer que $(v_{n})$ est une suite géométrique et préciser sa raison ainsi que son premier terme.
Voir la solution

Soit $n$ un entier naturel.
$v_{n+1}=\frac{u_{n+1}+1}{u_{n+1}-2}$ d’après l’énoncé.
$\qquad =\frac{\frac{2}{u_n-1}+1}{\frac{2}{u_n-1}-2}$
$\qquad =\frac{(\frac{2}{u_n-1}+1)\times (u_n-1)}{(\frac{2}{u_n-1}-2)\times (u_n-1)}$ en multipliant numérateur et dénominateur par $u_n-1$
$\qquad =\frac{2+(u_n-1)}{2-2(u_n-1)}$
$\qquad =\frac{u_n+1}{-2u_n+4}$
$\qquad =\frac{u_n+1}{-2(u_n-2)}$
$\qquad =-\frac{1}{2}\times \frac{u_n+1}{u_n-2}$
$\qquad =-\frac{1}{2}\times v_n$
Donc $(v_{n})$ est une suite géométrique de raison $-\frac{1}{2}$.
De plus, le premier terme de cette suite est $v_0=\frac{u_0+1}{u_0-2}=\frac{8}{5}$.

Au Bac

On utilise cette méthode pour résoudre :

Messages

  • Je n’arrive pas a savoir si Un= 3n/n est une suite géométrique ou arithmétique et pourquoi ?

    • Bonjour, j’imagine que tu veux parler de la suite (Un) définie pour tout entier n non nul par U(n)=3^n/n.

      Pour montrer qu’une suite est arithmétique de raison r, tu peux montrer que, pour tout n, U(n+1)=U(n)+r où r est une constante.

      Pour montrer qu’une suite est géométrique de raison q, tu peux montrer que, pour tout n, U(n+1)=U(n) * q où q est une constante (comme dans cette méthode).

      Mais il existe également des suites qui ne sont ni arithmétiques, ni géométriques. C’est le cas de ta suite. En effet, U(1)=3, U(2)=4,5 et U(3)=9.
      Cette suite ne peut pas être arithmétique puisqu’on n’ajoute pas la même quantité pour passer de U(1) à U(2) (+1,5) que pour passer de U(2) à U(3) (+4,5).
      Cette suite ne peut pas être géométrique puisqu’on ne multiplie pas par la même quantité pour passer de U(1) à U(2) (*1,5) que pour passer de U(2) à U(3) (*2).

      Donc (Un) n’est ni arithmétique, ni géométrique.

Un message, un commentaire ?

modération a priori

Ce forum est modéré a priori : votre contribution n’apparaîtra qu’après avoir été validée par un administrateur du site.

Qui êtes-vous ?
Votre message

Pour créer des paragraphes, laissez simplement des lignes vides.